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In this paper the problem of using measured modal parameters to detect and
locate damage in plate-like structures is investigated. Many methods exist for
locating damage in a structure given the modal properties before and after
damage. Unfortunately, many of these methods require a correlated ®nite
element model or mass normalized mode shapes. If the modal properties are
obtained using ambient excitation then the mode shapes will not be mass
normalized. In this paper a method based on the changes in the strain energy
of the structure will be discussed. This method was originally developed for
beam-like structures, that is, structures characterized by one-dimensional
curvature. In this paper the method will be generalized to plate-like structures
that are characterized by two-dimensional curvature. This method only requires
the mode shapes of the structure before and after damage. To evaluate the
e�ectiveness of the method it will be applied to both simulated and
experimental data.

# 1999 Academic Press

1. INTRODUCTION

Signi®cant work has been done in the area of detecting damage in structures
using changes in the dynamic response of the structure. Because the natural
frequencies and mode shapes of a structure are dependent on the mass and
stiffness distributions, any subsequent changes in them should, theoretically, be
re¯ected in changes in the frequency and mode shapes of the structure. The
problem of using measured frequencies and mode shapes and their sensitivity to
damage is a question not to be addressed in this paper. An extensive literature
review [1] of the state of the art of damage detection and health monitoring from
vibration characteristics has recently been published. From this review it is clear
that there are a large number of proposed methods of detecting damage from
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vibration characteristics but, unfortunately, many of these methods require a
correlated ®nite element model and/or mass normalized mode shapes. If the
modal properties are obtained using ambient excitation, as would most likely be
the case for a remote, automated health monitoring system, then the mode
shapes will not be mass normalized. The method proposed in this paper avoids
both of these requirements.
Pandey et al. [2] demonstrated that absolute changes in mode shape curvature

can be a good indicator of damage for the FEM beam structure they considered.
Stubbs et al. [3] presented a method based on the decrease in modal strain
energy between two structural degrees of freedom as de®ned by the curvature of
the measured mode shapes. This method has been successfully applied to data
from a damaged bridge [4] and has been compared to several other methods [5,
6]. Several other researchers have also used changes in mode shape curvature to
detect damage [7±10].
In this paper an extension of the method proposed by Stubbs et al. [3, 4] will

be presented. This method requires that the mode shapes before and after
damage be known, but the modes do not need to be mass normalized and only a
few modes are required. The original formulation by Stubbs et al. is inherently
limited to structures that are characterized by one-dimensional curvature (i.e.,
curvature that is uniquely a function of one independent spatial variable). In
other words, the 1-D strain energy method can only be applied to structures that
behave globally in a beam-like manner or can be decomposed into beam
elements. (It should be noted that the 1-D strain energy method has been
successfully applied to 2-D and 3-D structures, but only by decomposing them
into beam-like elements.) In this paper the method will be generalized to plate-
like structures that are characterized by two-dimensional curvature. To examine
limitations of the method, it will be applied to several sets of simulated data and
comparisons will be made between applying the original formulation to a series
of slices of the structure versus the true two-dimensional formulation.

2. THEORY

For completeness the derivation of the damage indicator will be shown for
both beam-like and plate-like structures.

2.1. BEAM-LIKE STRUCTURES

The strain energy of a Bernoulli±Euler beam is given by

U � 1
2

� `
0 EI

@2w
@x2

� �2
dx, �1�

where EI is the ¯exural rigidity of the beam. For a particular mode shape, ci(x),
the energy associated with that mode shape is

Ui � 1
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If the beam is subdivided into Nd divisions as shown in Figure 1, then the
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energy associated with each sub-region j due to the ith mode is given by

Uij � 1
2

� aj�1
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�EI�j @2ci
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dx: �3�

The fractional energy is therefore

Fij � Uij

Ui
and

XNd

j�1
Fij � 1: �4, 5�

Similar quantities can be de®ned for a damaged structure and are given as:
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where ( )* indicates a quantity calculated using the damaged mode shapes, c�i .
By choosing the sub-regions to be relatively small, the ¯exural rigidity for the jth
sub-region, EIj is roughly constant and F�ij becomes

F�ij � �EI��j
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If one assumes that the damage is primarily located at a single sub-region then
the fractional energy will remain relatively constant in undamaged sub-regions
and F�ij � Fij. For a single damaged location at sub-region j= k one ®nds
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By assuming that EI is essentially constant over the length of the beam for both
the undamaged and damaged modes, equation (11) can be rearranged to give an
indication of the change in the ¯exural rigidity of the sub-region:
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Figure 1. A schematic illustrating a beam's Nd sub-divisions.
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In order to use all the measured modes, m, in the calculation, the damage index
for sub-region k is de®ned to be

bk �
Xm
i�1

f �ik

�Xm
i�1

fik: �13�

One advantage to the formulation shown in equations (12) and (13) is that the
modes do not need to be normalized. Assuming that the collection of the
damage indices, bk, represent a sample population of a normally distributed
random variable, a normalized damage index is obtained using

Zk � �bk ÿ �bk�=sk, �14�
where �bk and sk represent the mean and standard deviation of the damage
indices, respectively. In this paper it will be assumed that normalized damage
indices with values greater than two are associated with potential damage
locations. The preceding derivation was originally presented by Stubbs et al.
[3, 4].

2.2. PLATE-LIKE STRUCTURES

The strain energy of a plate is given by reference [11] as:
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where D=Eh3/12(1ÿ �2) is the bending stiffness of the plate. For a particular
mode shape, ci(x, y), the energy associated with that mode shape is
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If the plate is subdivided into Nx subdivisions in the x direction and Ny

subdivisions in the y direction as shown in Figure 2 then the energy associated
with sub-region jk for the ith mode is given by

Uijk �Djk
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so
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Ui �
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and the fractional energy at location jk is de®ned to be

Fijk � Uijk=Ui and
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Similar expressions can be written using the modes of the damaged structure, c�i .
Using arguments similar to the ones used for beam-like structures a ratio of
parameters can be determined that is indicative of the change of stiffness in the
structure as shown in equations (21, 22):
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and an analogous term f�ijk can be de®ned using the damaged mode shapes. In
order to account for all measured modes, the following formulation for the
damage index for sub-region jk is used:

bjk �
Xm
i�1

f�ijk

�Xm
i�1

fijk: �23�

Once again a normalized damage index can be found using equation (14).
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Figure 2. A schematic illustrating a plate's Nx6Ny sub-regions.
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3. SIMULATION RESULTS

Both algorithms discussed in the theory section can be applied to detect
damage in plate-like structures. The algorithm derived assuming plate-like
behavior (2-D curvature) can be applied directly. To use the algorithm
formulated assuming one-dimensional curvature the structure must be divided
into ``slices'' and the algorithm needs to be applied to each slice individually.
The normalized damage index is then determined using the average and standard
deviation of all the damage indices from all the slices. The ``slicing'' algorithm is
presented here for comparison only, because that would be the only way to
apply the 1-D strain energy method to a plate-like structure. It is not expected
that the slicing algorithm will perform well as it does not preserve the torsional
stiffness between slices. Regardless of the method chosen several additional
parameters must be chosen including the numbers of modes and the number of
subdivisions to be used.
Several sets of simulated data were used to investigate the effectiveness of both

approaches in locating damage in plate-like structures as well as to study the
effect of changing the number of modes and subdivisions. The data were
generated using a ®nite element model of a pinned±pinned plate with several
elements reduced in stiffness to model damage. The ®nite element mesh is shown
in Figure 3. The plate was given pinned boundary conditions at y=ÿ300 and
y=300. The elements in the location of reduced stiffness are indicated in Figure
3. The reduced stiffness was in the region 48< x< 96, and 84< y< 132 with the
center of the damage being located at x=72, y=108. All the analysis was done
using MATLAB.
The ®rst case studied had the stiffness of four elements reduced by 25%. The

results from this case are shown in Figures 4±7. In all of these ®gures the
normalized damage index is shown as a 3-D bar graph with values greater than 2
drawn in a darker color and are the likely locations of damage.
In Figure 4 the damage index is shown by dividing the structure into slices in

the longitudinal direction of the plate, that is, slices with constant x values, with
20 divisions per slice and using just one mode. It is clear from Figure 4 that the
algorithm does a fairly good job of locating the damage. The largest peak in
Figure 4 has its center at a location of (72, 105). Increasing the number of modes

Pinned edge

Pinned edge

Elements with
reduced stiffness

300

–300
–144 1440

0

x

y

Figure 3. Finite element mesh of a pinned±pinned plate with an area of reduced stiffness.
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to ®ve did not noticeably change the results. In Figure 5 the number of divisions
per slice was increased to 40 and four modes are used. The results did not
improve by increasing the divisions and the location of the damage was found to
be roughly the same. When the structure was divided into slices in the transverse
direction (i.e., constant y), 20 divisions/slice and using four modes, the damage
was once again located as shown in Figure 6.
In Figure 7 the damage indices calculated using the algorithm derived for

plate-like structures, one mode, and 20 divisions in each direction, are shown.
Once again the damage is located fairly accurately. The two peaks in Figure 7
are located at (64�8, 105) and (79�2, 105). Clearly the choice of the number of
divisions will affect the location of the peak. Once again, increasing the number
of divisions and modes does not signi®cantly improve the results.

100
200

0
–100

–200–400

0

400

0

10

Y

X

D
a

m
a

g
e 

in
d

ex

Figure 4. Damage index for a plate with a region of 25% reduced stiffness. The plate was
divided into longitudinal slices, 20 divisions per slice, and one mode was used in the algorithm.
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Figure 5. Damage index for a plate with a region of 25% reduced stiffness. The plate was
divided into longitudinal slices, 20 divisions per slice, and four modes were used in the algorithm.
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An example in which the method of dividing the structure into slices has
several problems is examined in the second set of simulated data. In this case the
stiffness was reduced by only 10%. The results of dividing the structure into
longitudinal slices with 20 divisions/slice and using one and four modes are
shown in Figures 8 and 9 respectively. In this case the region of reduced stiffness
was not located when using just one mode and when additional modes were
included the damage indices were found to be large along the node line of the
second natural mode. In Figures 10, 11 the results using the algorithm for plate-
like structures is shown. In Figure 10 only one mode was used and 20 divisions
were used in both the x and y directions. From Figure 10 it is clear that the area
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Figure 6. Damage index for a plate with a region of 25% reduced stiffness. The plate was
divided into transverse slices, 20 divisions per slice, and four modes were used in the algorithm.
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Figure 7. Damage index for a plate with a region of 25% reduced stiffness. The plate was
divided into 20 divisions in each direction and the 2-D algorithm was used with one mode.
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of reduced stiffness was not located. In Figure 11 four modes and 20 divisions in
each direction were used in the 2-D algorithm and clearly the general location of
the damage has been identi®ed.
In all of the examples used thus far it was assumed that the mode shapes were

known exactly on a very ®ne grid of sensors. In actual practice this will
obviously not be the case. A reduced set of data was used to determine how the
results change using a coarser grid of sensors. In this case the stiffness was
reduced 25% and the number of sensor locations was reduced from 338 to 56.
The results from dividing the structure into longitudinal slices with 20 divisions/
slice and using four modes are shown in Figure 12. Once again, when more than
one mode is used, the algorithm incorrectly identi®ed damage as being along a
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Figure 8. Damage index for a plate with a region of 10% reduced stiffness. The plate was
divided into longitudinal slices, 20 divisions per slice, and one mode was used in the algorithm.
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Figure 9. Damage index for a plate with a region of 10% reduced stiffness. The plate was
divided into longitudinal slices, 20 divisions per slice, and four modes were used in the algorithm.
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node line. Also, the resolution of this method is clearly limited by the number of
slices that are available. Results from using the algorithm for 2-D curvature with
four modes and 20 divisions in each direction are shown in Figure 13 and the
general area of the damage can be clearly seen.
One of the major dif®culties associated with implementing the algorithms

discussed in this paper was the calculation of the derivatives and integrals when
the mode shape is known at a relatively small number of discrete locations. In
both algorithms additional intermediate points were calculated by curve-®tting
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Figure 10. Damage index for a plate with a region of 10% reduced stiffness. The plate was
divided into 20 divisions in each direction and the 2-D algorithm was used with one mode.
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Figure 11. Damage index for a plate with a region of 10% reduced stiffness. The plate was
divided into 20 divisions in each direction and the 2-D algorithm was used with four modes.
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the data. The derivatives and integrals required by the algorithms were then
calculated numerically.

4. EXPERIMENTAL SETUP AND RESULTS

To demonstrate the new technique experimentally, a 1738 in.6 1814 in.6
3
8 in.

aluminium plate was tested before and after a cut was made at two locations in
the plate. The cut was made with a jeweler's saw and each end of the plate was
clamped to an air bearing as shown in Figure 14. The use of air bearings was an
attempt to have consistent boundary conditions throughout all the tests. Thirty-
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Figure 12. Damage index for a plate with a region of 25% reduced stiffness using a reduced
number of sensors. The plate was divided into longitudinal slices, 20 divisions per slice, and four
modes were used in the algorithm.
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Figure 13. Damage index for a plate with a region of 10% reduced stiffness. The plate was
divided into 20 divisions in each direction and the 2-D algorithm was used with four modes.
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one accelerometers were glued to the plate in the con®guration shown in Figure
15. The impact location is also shown in Figure 15. Sawing diagonally at
damage location one as shown in Figure 15 provided the initial damage for the
structure. After this ®rst cut additional damage was added to the plate at a
second location, damage location two, as shown in Figure 15. A brief description
of the eight damage cases studied is given in Table 1.
The test equipment used in this study consisted of a Hewlett-Packard (HP)

3566A dynamic data acquisition system including a model 35650 mainframe,
35653A source module, four 35653A 8-channel input modules which provided
power for accelerometers and performed the analog to digital conversion of
accelerometer signals, and a 35651C signal processing module that performed
the needed Fast Fourier Transform calculations. A Toshiba Tecra 700CT
Laptop was used for data storage and as a platform for the HP software that is
the user interface for the data acquisition system.
The dynamic range for data acquisition was set by experimenting with

different excitation levels and then setting the range so that response overloads
were avoided. Wilcoxen Research model 736T accelerometers were used for the
vibration measurements. This accelerometer has a nominal sensitivity of 10 mV/
g, an operating frequency of about 5±15 000 Hz, and an amplitude rate of 50 g's.

Figure 14. Experimental con®guration of plate for damage identi®cation tests.

TABLE 1

Description of the damage cases studied for the plate

Number Description

1 1 in. long cut at location 1
2 2 in. long cut at location 1
3 Cut extends to 1/4 in. from the edge of the plate at location 1
4 Cut is all the way through the edge at location 1
5 0�75 in. cut at location 2
6 1�75 in. cut at location 2
7 Cut extends to 1/4 in. from the edge of the plate at location 2
8 Cut is all the way through the edge at location 2
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Lengths of MicroDot cable were used to connect the accelerometers to the input
modules.
The system samples the analog signal from the accelerometers at

approximately 32 kHz (regardless of the frequency range being analyzed), passes
the signal through an analog anti-aliassing ®lter, digitizes it, then passes the data
through a digital anti-aliassing ®lter with the cutoff frequency based upon the
Nyquist frequency for the speci®ed sampling parameters. The signal is then
decimated based on the particular sampling parameters.
The data acquisition system was set up to measure acceleration±time histories

and a force±time history of the input, and to calculate the frequency±response
functions (FRF's) of these time histories. Testing parameters were speci®ed as 10
averages discretized with 1024 samples. A force window was applied to the
signal from the impact hammer's force transducer and an exponential window
was applied to the signal from the accelerometers. The 1024 time samples yielded
512 spectral points, but because of the rolloff in the anti-aliassing ®lters, only
401 spectral points are displayed.
The curve ®tting and modal extraction were done using the software program,

DIAMOND [12]. Although a variety of methods are available in this code
(ERA, rational polynomial, and complex exponential), the rational polynomial
method was the only one used.
The structure was tested several times in an undamaged state and then again

after each saw cut. The strain energy method was applied to the data and the
results are shown in Figures 16±19.
This method clearly identi®ed both damage locations for damaged case 8, but

only identi®ed the 1st damage location for damage case 7. Evidently the change
in mode shape curvature due to the damage at the ®rst location dominated the
results until the damage at the second location was roughly comparable in
severity. This indicates that this method has problems identifying multiple
damage locations of different degrees of severity. The smallest case of damage

17 3/8 in

Damage location 2

Damage location 1

Figure 15. Experimental schematic of plate for damage identi®cation tests. X, Impact location;
*, accelerometer locations.
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that was identi®ed was damage case 3. Clearly in damage case 2 the damage is
not identi®ed and some false positives appear at locations other than the damage
location. Without prior knowledge there is no way to determine which is the true
damage and which is a false positive.
Overall, the 2-D strain energy method performed comparably to the historical

performance of the 1-D strain energy method [5]. Speci®cally, the method
showed a propensity for false-positive results (especially at low levels of
damage), but generally performed well as the level of damage increased.
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Figure 16. Experimentally determined damage index for damage case 8. The plate was divided
into 20 divisions in each direction and the 2-D algorithm was used with 12 modes.
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Figure 17. Experimentally determined damage index for damage case 7. The plate was divided
into 20 divisions in each direction and the 2-D algorithm was used with 11 modes.
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5. CONCLUSIONS

A damage detection algorithm derived for structures whose modes are
characterized by one-dimensional curvature has been generalized for plate-like
structures that are characterized by two-dimensional curvature. The method only
requires the mode shapes of the structure before and after damage and the
modes do not need to be mass normalized making it very advantageous when
using ambient excitation. The algorithm was found to be effective in locating
areas with stiffness reductions as low as 10% using relatively few modes. The
algorithm was also demonstrated successfully using experimental data.
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Figure 18. Experimentally determined damage index for damage case 3. The plate was divided
into 20 divisions in each direction and the 2-D algorithm was used with 12 modes.
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Figure 19. Experimentally determined damage index for damage case 2. The plate was divided
into 20 divisions in each direction and the 2-D algorithm was used with 12 modes.



374 P. CORNWELL ET AL.

ACKNOWLEDGMENTS

Funding for this research was provided by the Department of Energy through
the Los Alamos National Laboratory's Laboratory Directed Research and
Development (LDRD) program.

REFERENCES

1. S. W. DOEBLING, C. R. FARRAR and M. B. PRIME 1998 The Shock and Vibration
Digest 30(2), 91±105. A summary review of vibration-based damage identi®cation
methods.

2. A. K. PANDEY, M. BISWAS and M. M. SAMMAN 1994 Journal of Sound and
Vibration 154, 321±332. Damage detection from changes in curvature mode shapes.

3. N. STUBBS, J.-T. KIM and K. TOPOLE 1992 Proceedings of the ASCE Tenth
Structures Congress, 543±546. An e�cient and robust algorithm for damage locali-
zation in o�shore platforms.

4. N. STUBBS, J.-T. KIM and C. R. FARRAR 1995 Proceedings of the 13th International
Modal Analysis Conference, 210±218. Field veri®cation of a nondestructive damage
localization and sensitivity estimator algorithm.

5. D. V. JAUREGUI and C. R. FARRAR 1996 Proceedings of the 14th International
Modal Analysis Conference, 119±125. Damage detection algorithms applied to
numerical modal data from a bridge.

6. D. V. JAUREGUI and C. R. FARRAR 1996 Proceedings of the 14th International
Modal Analysis Conference, 1423±1429. Comparison of damage identi®cation algo-
rithms on experimental modal data from a bridge.

7. J. CHANCE, G. R. TOMLINSON and K. WORDEN 1994 Proceedings of the 12th
International Modal Analysis Conference, 778±785. A simpli®ed approach to the
numerical and experimental modeling of the dynamics of a cracked beam.

8. I. KONDO and T. HAMAMOTO 1994 Proceedings of the fourth International O�shore
and Polar Engineering Conference 4, 400±407. Local damage detection of ¯exible
o�shore platforms using ambient vibration measurements.

9. O. S. SALAWU and C. WILLIAMS 1994 Proceedings of the 12th International Modal
Analysis Conference, 933±939. Damage location using vibration mode shapes.

10. D. I. NWOSU, A. S. J., SWAMIDAS, J. Y. GUIGNE and D. O. OLOWOKERE 1995
Proceedings of the 13th International Modal Analysis Conference, 1122±1128. Studies
on in¯uence of cracks on the dynamic response of tubular T-joints for nondestruc-
tive evaluation.

11. D. YOUNG 1956 Journal of Applied Mechanics, 448±453. Vibration of rectangular
plates by the Ritz method.

12. S. W. DOEBLING, C. R. FARRAR and P. J. CORNWELL 1997 Proceedings of the Sixth
International Conference on Recent Advances in Structural Dynamics, 399±412.
DIAMOND: A graphical user interface toolbox for comparative modal analysis
and damage identi®cation.


	INTRODUCTION
	THEORY
	Figure 1
	Figure 2

	SIMULATION RESULTS
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

	EXPERIMENTAL SETUP AND RESULTS
	Figure 13
	Figure 14
	Table 1
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

